扬声器主要参数综合设计和分析

  • 867

扬声器常用机电参数以及计算公式、测量方法简述如下:

1.直流电阻Re

由音圈决定,可直接用直流电桥测量。

2.共振频率Fo

由扬声器的等效振动质量Mms和等效顺性Cms决定, Fo可直接用Fo测试仪测量或通过测量阻抗曲线获得。

扬声器主要参数综合设计和分析

3.共振频率处的最大阻抗Zo

由音圈、磁路、振动系统(鼓纸、弹波)共同决定,可用替代法测量或通过测量阻抗曲线获得。

Zo = Re+(BL)2/(Rms+Rmr)

4.机械力阻Rms

由鼓纸、弹波的内部阻尼及使用胶水的特性决定,可由测量出机械品质因数Qms后通过下列公式计算:

Rms =(1/Qms)*SQR(Mms/Cms)

这里SQR( )表示对括号( )中的数值开平方根,下同。

5.辐射力阻Rmr

由口径、频率决定,低频时可忽略。

Rmr = 0.022*(f/Sd)2

6.等效辐射面积Sd

只与口径(等效半径a)有关。

Sd =π* a2

7.机电耦合因子BL

由磁路Bg值和音圈线有效长度L决定,也可通过测量电气品质因数Qes后用下列公式计算:

(BL)2 =(Re/Qes)*SQR(Mms/Cms)

8.等效振动质量Mms

由音圈质量Mm1、鼓纸等效质量Mm2、辐射质量Mmr共同决定, Mms可由附加质量法测量获得。

Mms=Mm1+Mm2+2Mmr

9.辐射质量Mmr

只与口径(等效半径a)有关。

Mmr =2.67ρo a^3

其中ρo=1.21kg/m^3为空气密度, a为扬声器等效半径。

10.等效顺性Cms

是指扬声器振动系统的支撑部件的柔顺度.其值越大,扬声器的整个振动系统越软.单位:毫米/牛顿(mm/N).

由鼓纸顺性Cm1、弹波顺性Cm2共同决定,此顺性即是我们所称的变位,只是单位需换算为国际单位制:m/N,而变位可以用变位仪直接测量。Cms可由附加容积法测量获得。

Cms=(Cm1*Cm2)/(Cm1+Cm2)

11.等效容积Vas

只与等效顺性、等效辐射面积有关。

Vas =ρoc^2Sd^2*Cms

此处c为空气中的声速,c=344m/s

12.机械品质因数Qms

由振动系统的等效振动质量Mms、等效顺性Cms、机械力阻Rms共同决定,Qms可由阻抗曲线的测量获得。

Qms =(1/Rms)SQR(Mms/Cms)=(Fo/Δf)(Zo/Re)

f 为阻抗曲线上阻抗等于SQR(Zo*Re)所对应的两个频率的差值。

13.电气品质因数Qes

由振动系统的等效振动质量Mms、等效顺性Cms、机电耦合因子BL共同决定,由阻抗曲线的测量获得。

Qes =[Re/(BL)^2]SQR(Mms/Cms)=(Fo/Δf)SQR(Zo*Re)/(Zo-Re)

14.总品质因数Qts

由机械品质因数Qms和电气品质因数Qes共同决定。

Qts =(QmsQes)/(Qms+Qes)=(Fo/Δf)SQR(Re/Zo)

15.参考电声转换效率ηo

由机电耦合因子BL、等效辐射面积Sd、等效振动质量Mms共同决定。

ηo =(ρo/2πc)(BLSd/Mms)^2/Re

16.参考灵敏度级SPLo

与参考电声转换效率ηo直接相关。

SPLo = 112+10lgηo

17.参考振幅ξ

与参考电声转换效率ηo、电功率Pe、等效半径a、频率f有关。

ξ = 0.481SQR(Peηo)/(a*f)^2

以上这些参数现在均可用扬声器计算机测试系统进行测量和计算,常用的测试系统有LMS、CLIO、MLSSA、DAAS、SYSID、LAUD、IMP等。另外,也可利用一些计算机模拟软件进行扬声器参数的基本设计,如LEAP、CALSOD、Speaker Easy、DLC Design、AudioCad、SOUNDEASY等。

扬声器的功率、失真指标无法直接用公式进行定量计算,只能作些定性分析和探讨。

扬声器的额定正弦功率以及纯音检听功率,基本上由低频最大振幅ξo决定。一般低频最大振幅是在共振频率Fo处。扬声器的低频最大振幅主要取决于磁路结构和音圈卷宽,当然与振动系统也有很大的关系。扬声器正常工作时,音圈不能跳出磁间隙,即有ξo≤Xmax,否则会产生很大的非线性失真(表现为振幅异常音)、甚至会导致音圈损坏(卡死或烧毁)。Fo处最大振幅ξo可由下列公式计算:

ξo = 1.414BLICmsQts (25)

式中I为馈给扬声器的电流,I=SQR(Pe/Re)。可见,假使扬声器的基本机电参数(BL、Cms、Qts)确定,其电流I决定的功率Pe=I2*Re就受到低频最大振幅ξo≤Xmax的限制。反之,假使扬声器的功率必需达到一定值,则扬声器的等效顺性就不能太大,亦即Fo不能太小。当有(BL)2/Re>>Rms时,公式(25)又可简化如下:

ξo = 0.225V/(BLFo) (26)

式中V为馈给扬声器的电压,V=SQR(Pe*Re)。此式更直观地显示出最大振幅ξo与电压V、机电耦合因子BL、共振频率Fo的关系。一般所称的总品质因数Qts对低频振幅的控制能力就由公式(25)、(26)体现和反映,其中BL值的作用更明显。

扬声器的低频声功率Pa同样也受到限制:

Pa= Peηo=4.33ξ^2a^4f^4

可见,声功率Pa既与电功率Pe有关、又与电声转换效率ηo直接相关,实际上最终与扬声器的振幅、口径、频率有关。为了达到一定的声功率Pa,在频率一样的条件下,口径越小、则其振幅越大,而振幅一般都受到限制,所以口径就不能太小。亦即,小口径扬声器不可能产生很大的声功率,因为小口径扬声器一般都受到结构限制,其振幅较小,效率较低,而音圈不会很大、所用线径有限、所能承受的电功率也有限。

扬声器额定噪声功率和长期最大功率,既与低频最大振幅有关,又与音圈的线径、材料和系统的散热条件、使用的胶水等直接相关。大功率扬声器,一般均使用高强度耐高温的音圈线、音圈骨架、胶水,采用大冲程、散热良好的磁路结构,音圈采用较宽的卷宽和线径,弹波采用强度好、抗疲劳性能好的材料,当然一般也采用大口径系列。扬声器额定噪声功率和长期最大功率,最终只能通过负荷试验获得和验证。

  • 本文由 发表于 2020年11月4日
评论  0  访客  0

发表评论

匿名网友

:?: :razz: :sad: :evil: :!: :smile: :oops: :grin: :eek: :shock: :???: :cool: :lol: :mad: :twisted: :roll: :wink: :idea: :arrow: :neutral: :cry: :mrgreen: