[转] 基于Micro-Cap建立入耳式耳机的仿真模型

  • 353

这里所有的仿真都是基于Spectrum Software公司出的Micro-Cap 11 电路仿真软件,里面集成了KTI建立的声学库。下面讨论的是在这个声学库的基础上,如何组建一个完整的入耳式耳机的声学仿真模型,(下一篇文章讲入耳式耳机的仿真和实际测试结果对比)。

入耳式耳机通常的佩戴方式如下图所示,最右边是我们将要进行仿真的耳机。

[转] 基于Micro-Cap建立入耳式耳机的仿真模型

图1 入耳式耳机通常的佩戴方式

而入耳式耳机的测试示意图,下图所示。

[转] 基于Micro-Cap建立入耳式耳机的仿真模型

图2 入耳式耳机的测试示意图

其详细的入耳式耳机内部结构,大致可以分为无泄漏设计和平衡泄露设计:

[转] 基于Micro-Cap建立入耳式耳机的仿真模型

图3 无泄漏设计

[转] 基于Micro-Cap建立入耳式耳机的仿真模型

图4 平衡泄漏设计

即使在非常小的器件里,Thiele-Small参数仍然适用,需要结合器件内部的腔体和管道,建立起耳机芯的声学模型。

[转] 基于Micro-Cap建立入耳式耳机的仿真模型

图5 耳机芯结构截面图

[转] 基于Micro-Cap建立入耳式耳机的仿真模型

图6 耳机芯声学模型

耳机芯的声学模型里面所使用的T/S参数,都是通过激光测距配合电压曲线(如下图),电流曲线,外加已知量Sd或灵敏度,测得所需要的参数。

[转] 基于Micro-Cap建立入耳式耳机的仿真模型

图7 激光测距在TS参数测试中的使用

如此,可以将耳机测试转化成如下图所示的等效电路图。

[转] 基于Micro-Cap建立入耳式耳机的仿真模型

图8 耳机仿真模型

其中,耳机芯为依照图6中耳机芯模型建立起来的宏。在耳机芯的后部贴有后网布,后部的体积速度经过后网布终止于后腔。耳机芯前部的体积速度,经过前腔,前管道,前网布,通过橡胶套耦合到IEC711的耳道里。

下面继续讲解一下网布,声导管和IEC711耳朵的模型。

薄的均匀细密网布可以看成纯声阻, 可以根据网布公司提供的数据进行计算

[转] 基于Micro-Cap建立入耳式耳机的仿真模型

图9 Sefar网布参数

红色框内标注的是声学阻尼,分成MKS和CGS的,我们需要使用MKS单位制。

这里的声阻,实际是比流阻, R = Δp / U 这里的Δp是网布两面的压力差,u流速,参数跟面积无关;在特定面积上的阻尼,表示为R = Δp / U , 这里的U是体积流速。

[转] 基于Micro-Cap建立入耳式耳机的仿真模型

图10 后网布

如上图,后网布的有效透气面积约为2mm2, 计算得到的阻尼如下,该值用于赋给耳机芯后面的网布。

[转] 基于Micro-Cap建立入耳式耳机的仿真模型

另外,可以用KTI的声阻仪直接测量得到

[转] 基于Micro-Cap建立入耳式耳机的仿真模型

图11 声阻测试仪

声导管的模型是使用Micro-Cap里面的延时线建立的,输入的

[转] 基于Micro-Cap建立入耳式耳机的仿真模型

图12,IEC711人工耳模

以上,可以利用Micro-Cap建立起一个完整的入耳式耳机的仿真模型,仿真和实际测试结果的对比,请阅读下一篇文章:入耳式耳机的仿真和实际测试结果对比

文章来源:精拓丽音 微信公众号,作者 Cain Gu,https://mp.weixin.qq.com/s/7pQtuiNj40SG97dJetBIeQ

  • 本文由 发表于 2023年9月12日
评论  0  访客  0

发表评论

匿名网友

:?: :razz: :sad: :evil: :!: :smile: :oops: :grin: :eek: :shock: :???: :cool: :lol: :mad: :twisted: :roll: :wink: :idea: :arrow: :neutral: :cry: :mrgreen: